

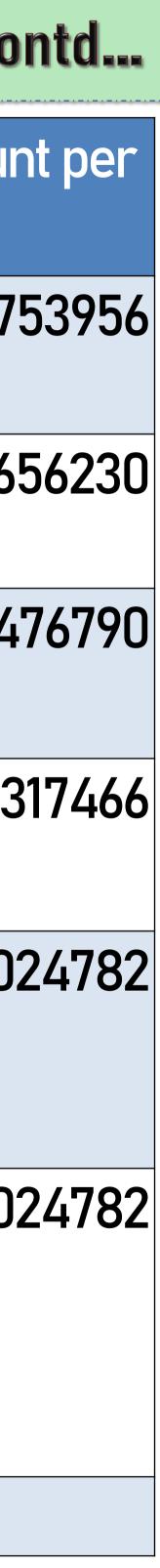
Dr. Rajendra Prasad Central Agricultural University, PUSA, Bihar

KRISHI VIGYAN KENDRA

Saraiya, Muzaffarpur, Bihar

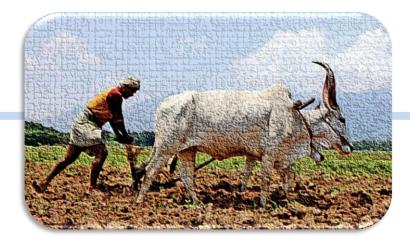
Guinquennial ReviewTeamReport

Period of 2011-12 to 2018-19


Presented by:-Dr. Anupma Kumari Senior Scientist and Head

IDRA ihar

Sanctioned post	Name	Qualification	Basic	Gross Salary per	Total Amoun
			Pay	Month	Year
Sr. Scientist & Head	Dr. Anupma	PhDAgronomy	104100	132876	175
JI. JUEINISCATIEAU	Kumari				
SMS Home Science	Dr. Savita Kumari	PhD Human Nutrition	101200	125472	165
SMS Soil Science	Dr. Kamlesh	PhD Soil Science	82200	111878	14
SIND SUIL SCIENCE	Kumar Singh				
SMS Plant Protection	Sri H. C. Chaudhary	MSc. Plant Pathology	73000	99808	13
SMSFLant FIOLECTION					
	Ms. Shobha Rawat	MFSc. Fishries	56100	77635	102
SMS Fisheries		Resource			
		Management			
	Er. Tarun Kumar	M. Tech Soil and	56100	77635	102
SMS Agriculture Engg.		Water Engineering,			
Shis Agriculture Lingg.		RS and GIS			
SMS 6		Va	acant		

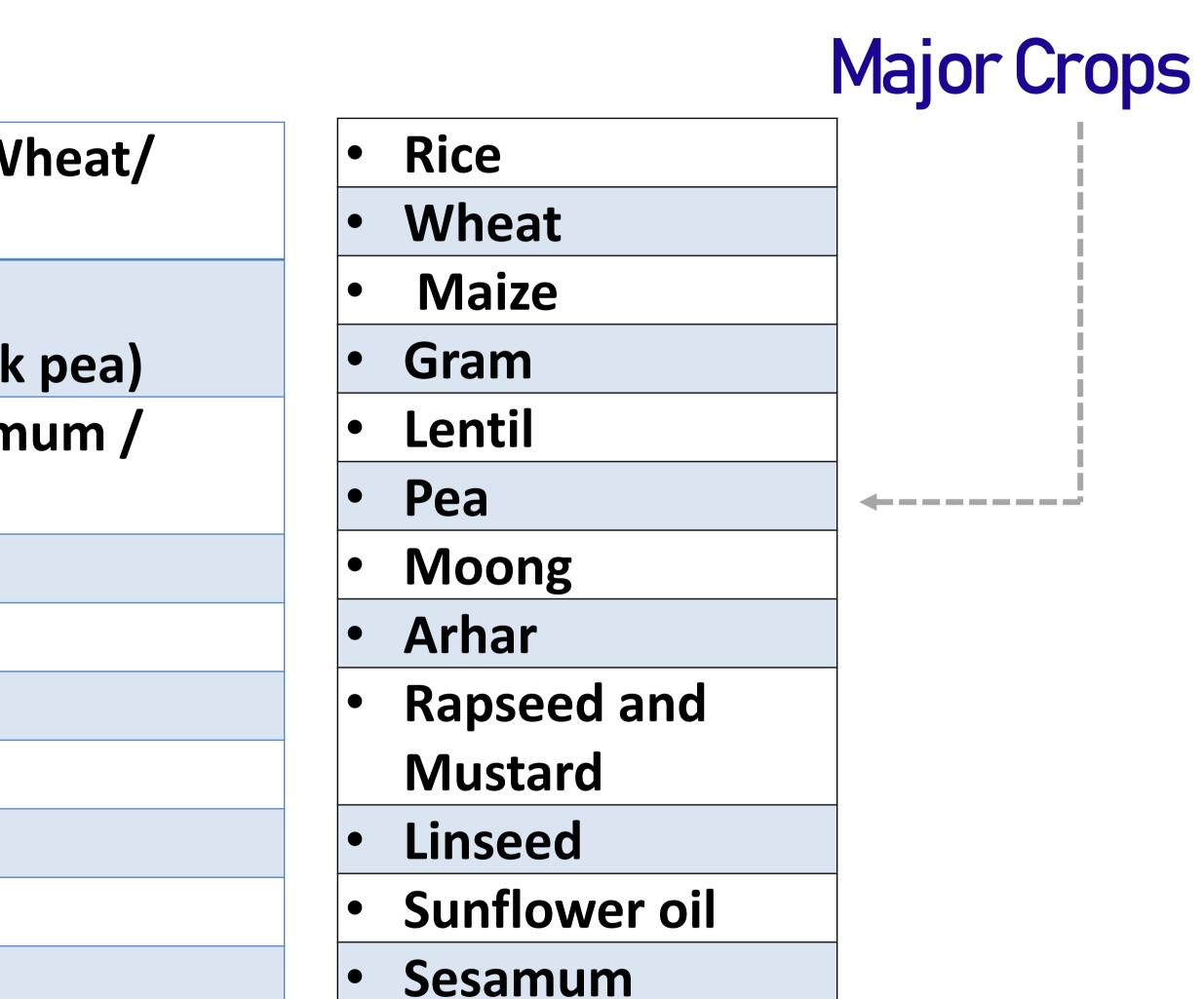

Staff Position of KVK, Saraiya Contd...

Staff Position of KVK, Saraiya

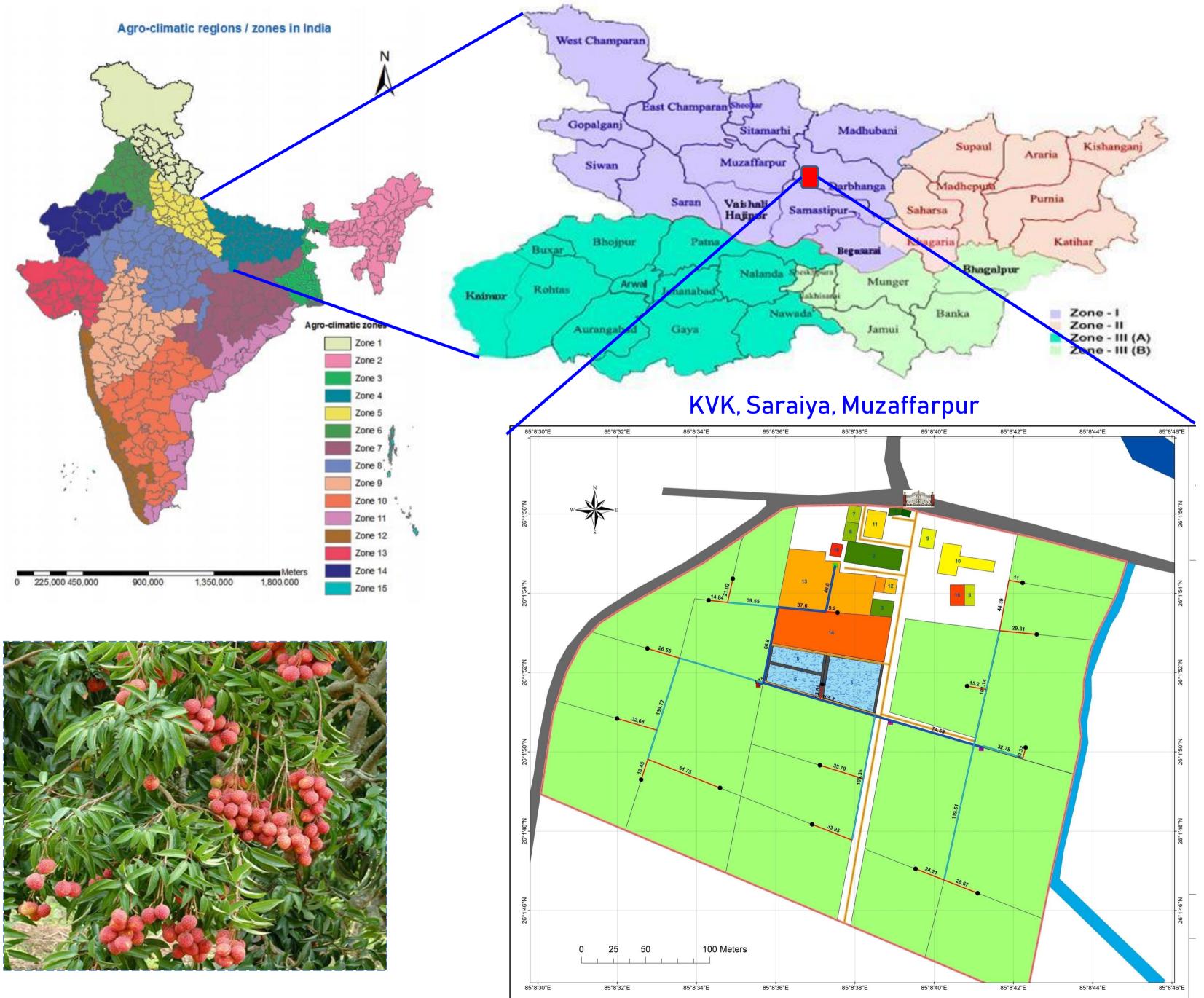
	<u></u>				
Sanctioned post	Name	Qualification	Basic Pay	Gross Salary per Month	Total Amount per Year
Computer Programmer			Vacant		
Farm Manager	Mr. Anupam Adarsh	PhD Vegetable Science	36500	49904	658732
	Mr. Indrajeet Kumar Mandal	MSc Soil Science	36500	49904	658732
Accountant/Assistant	Smt Kumari Pratibha	MA Economics	36500	49904	658732
Stenographer	Mr. Rama Ranjan	BSc Chemistry	26300	36522	482090
Driver1(Jeep)	Sri Ram Ekwal Singh		41000	51216	676051
Driver 2 (Tractor)	Vacant				
Supporting Staff 1	Sri Ram Sakal Rai		36400	45696	603187
Supporting Staff 2			Vacant		

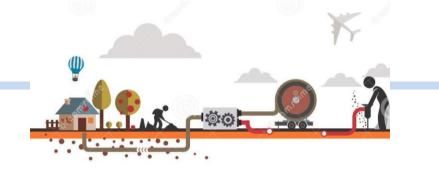
KVK, Saraiya, Muzaffarpur

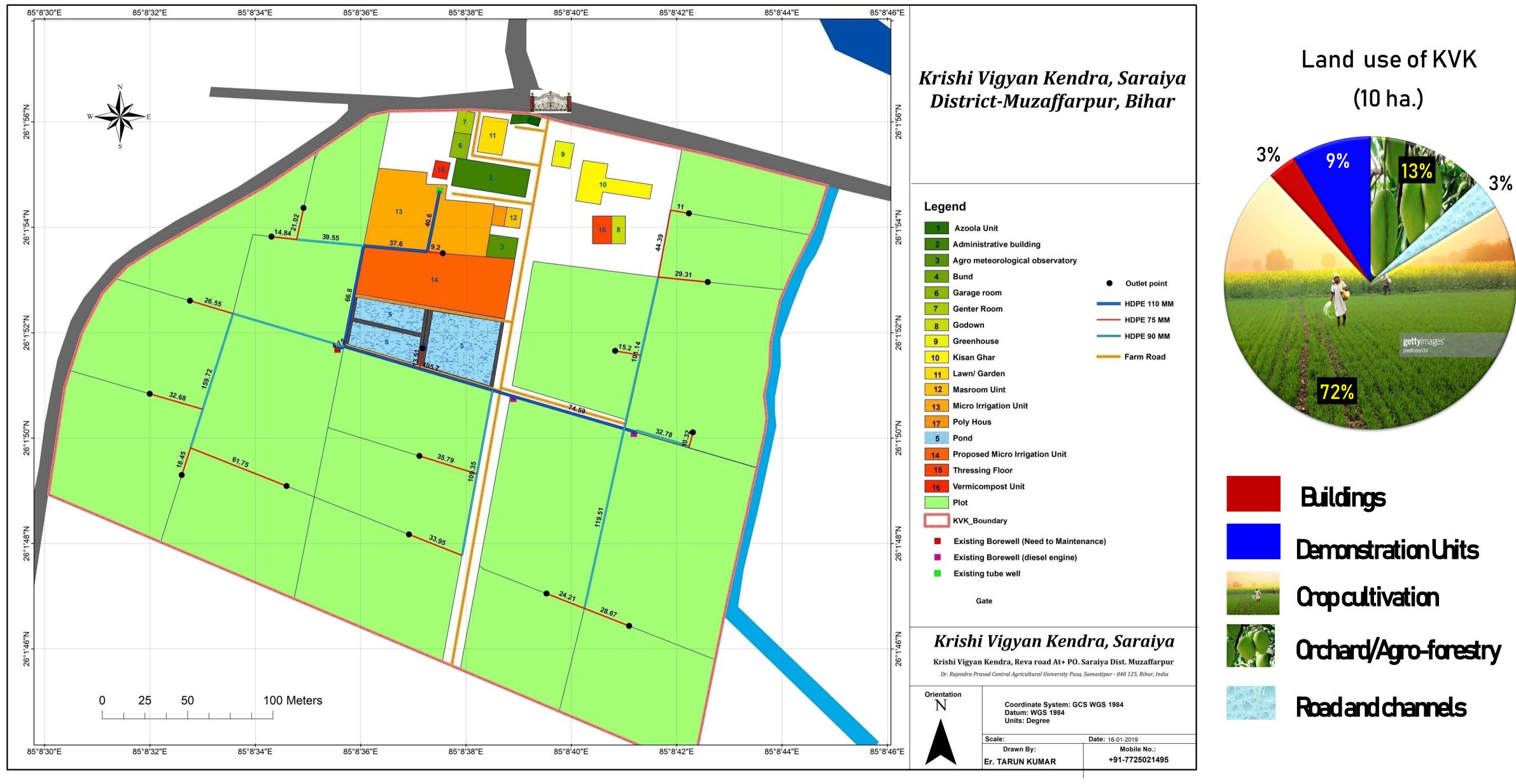
Farming Situation

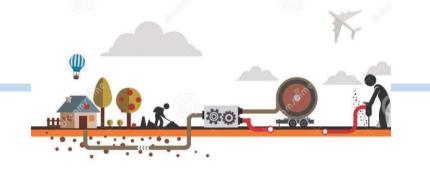

_ _ _ _ •

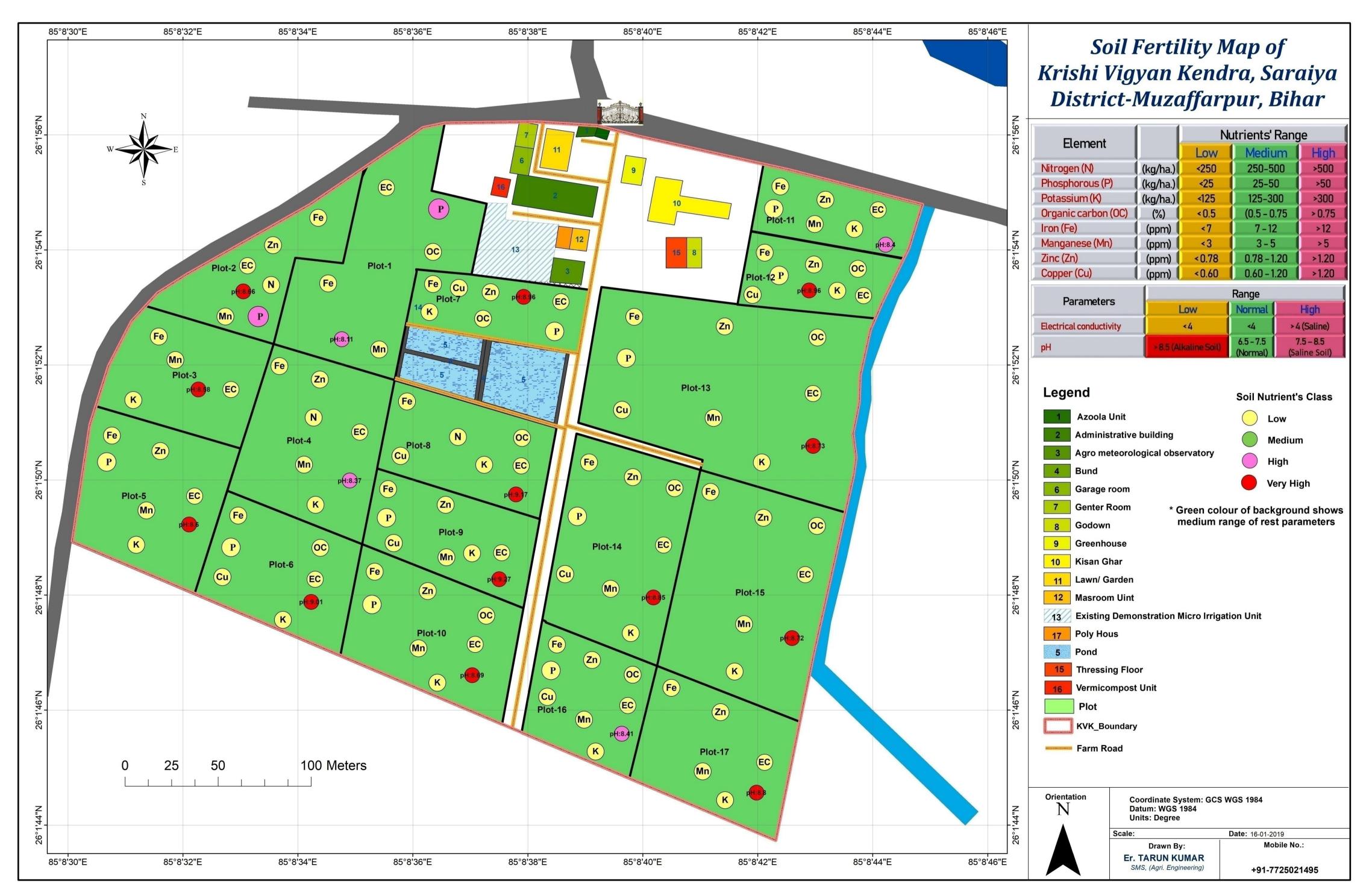
- Cereal based farming system (Rice/Wheat/ Maize)
- **Pulses based farming system (Black** lacksquaregram/Pigeon pea/ Green gram/ Chick pea)
- **Oilseed based farming system (Sesamum /** Mustard/Sunflower/Linseed)
- Agri –Horti. Based farming system
- **Cereal-Livestock Rearing** \bullet
- **Bee-keeping**
- **Mushroom cultivation**
- **Zero-tillage**
- Vermi-composting
- **Fisheries**



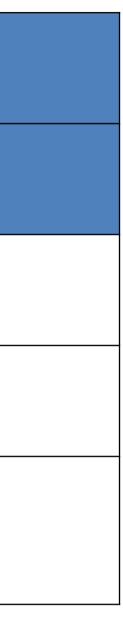

Agro-ecological Features


Study Area	Muzaffarpur District
Geographical area (Sq Km)	3172 Sq. km.
Agro-climatic Zone	Agro- climatic zone -I (Northern West)
Number of Tehsil/ Block	16
Major Drainages	Gandak, Burhi Gandak
Elevation	320 m. to 881 m.
Average Rainfall	1046 mm
Net irrigated area	1121.68
Depth range (m)	55.5 to 121.85
Discharge (litres per second)	14 to 26 (lps)
Temperature Maximum Minimum	36.6 (⁰ C) 7.7 (⁰ C)




Infrastructural facilities available at KVK

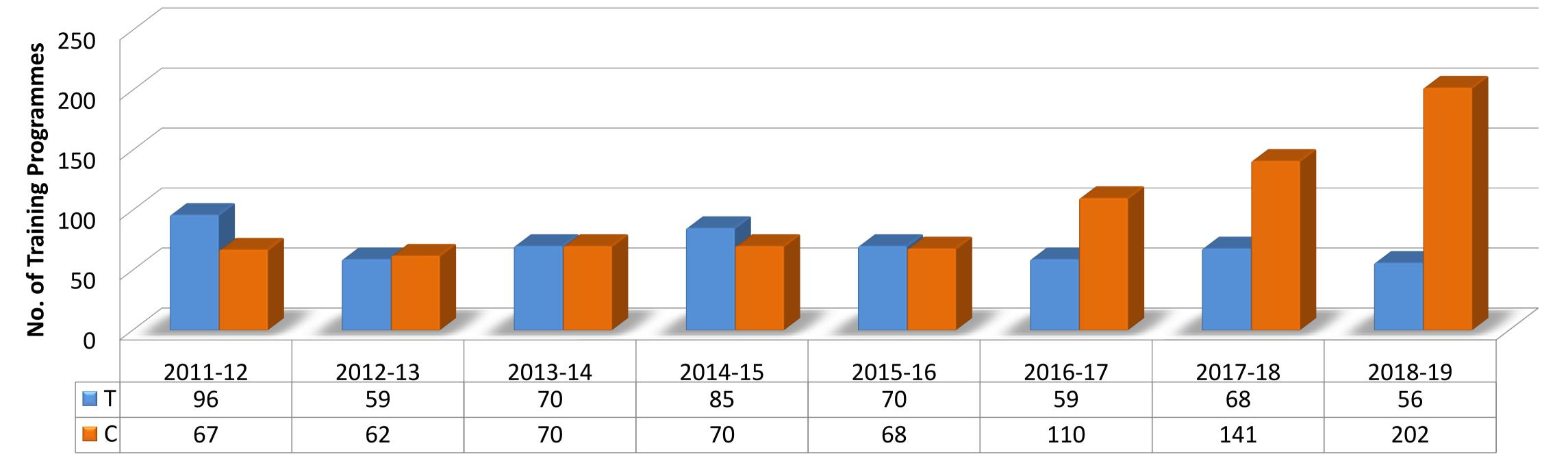
Soil Fertility Map of KVK, Saraiya

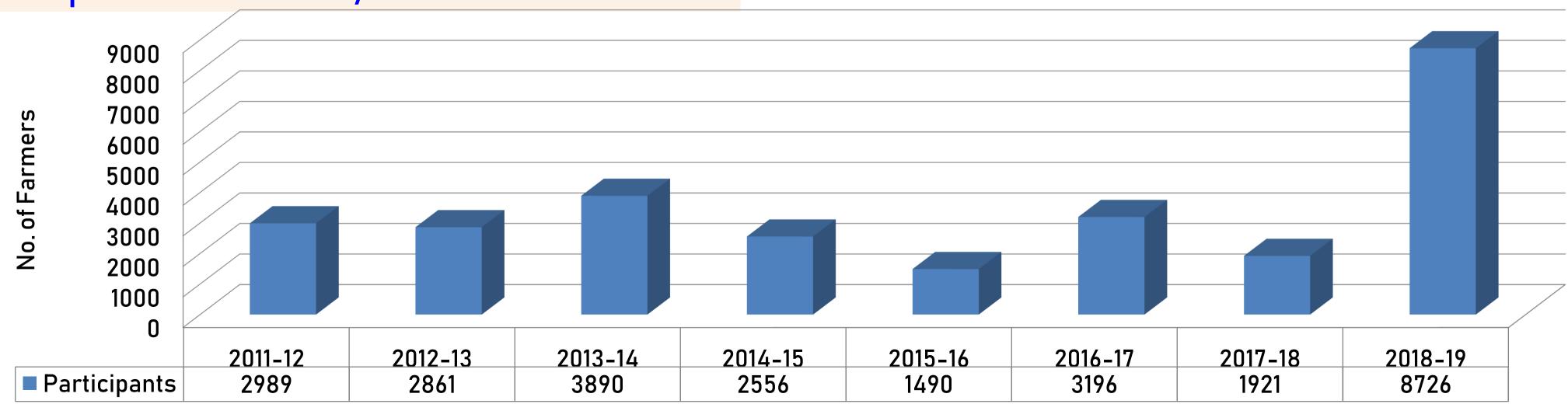


Details of Training Programmes Conducted

			TOTAL				
S. N	Training Programmers	Т	С	P			
1.	Farmers / farm women	563	790	27629			
2.	Extension functionaries	135	105	4549			
3.	Rural youths	203	206	4367			

T = Target, C = Course, P = Participate

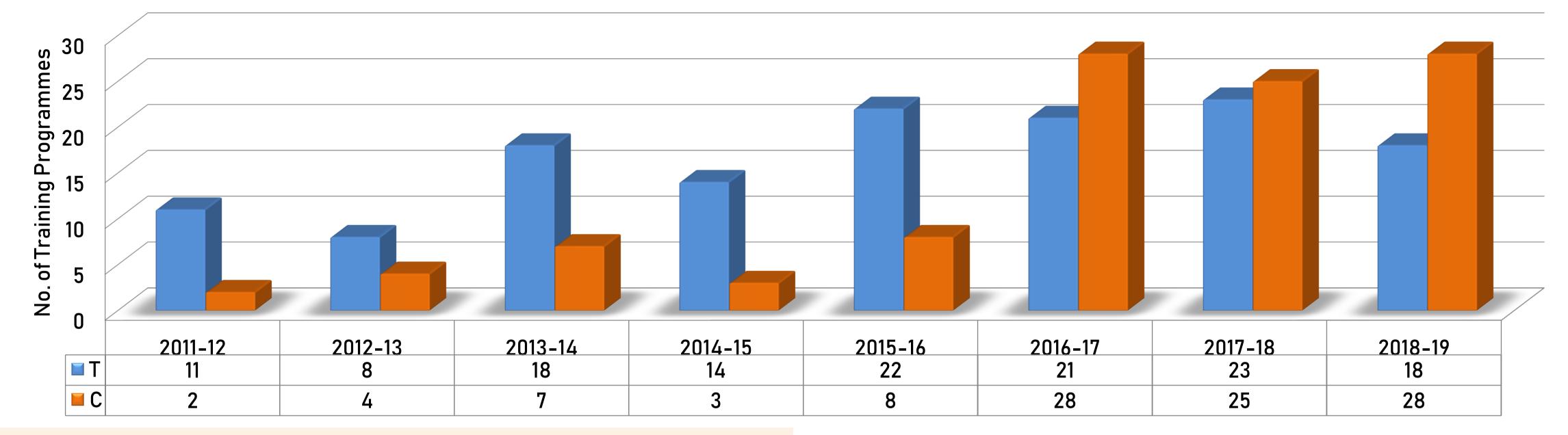




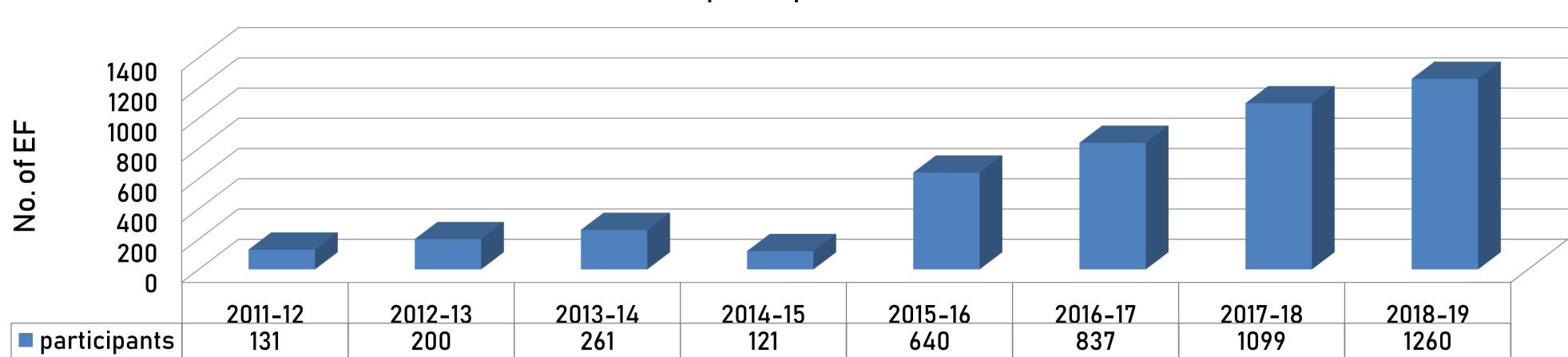
Farmers / Farm Women Trainings

Training programmes conducted for Farmers / Farm Women (last 8 years)

Year-wise participants of Farmers / Farm Women


Participants

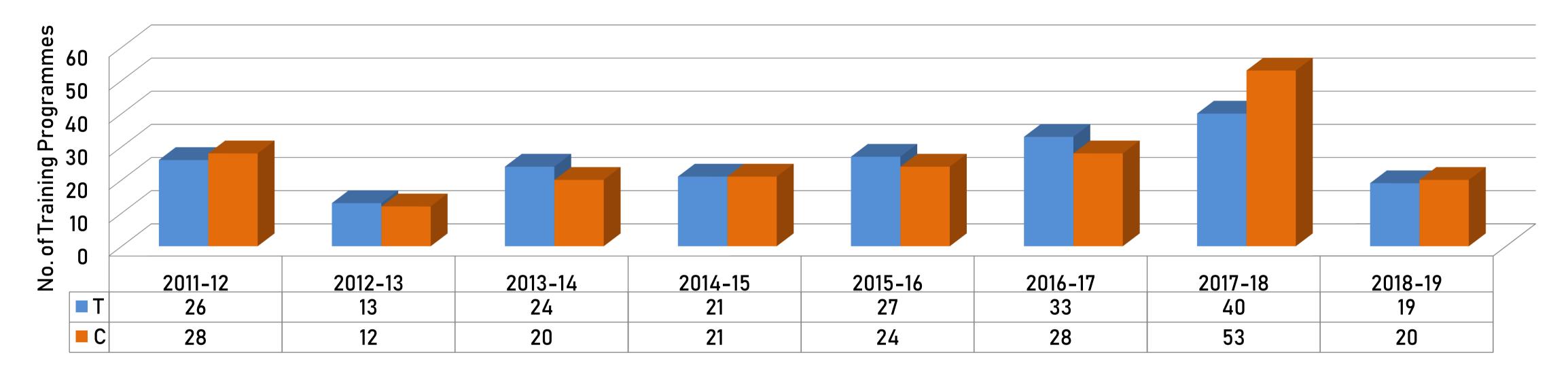
Average participants : 3454 per year



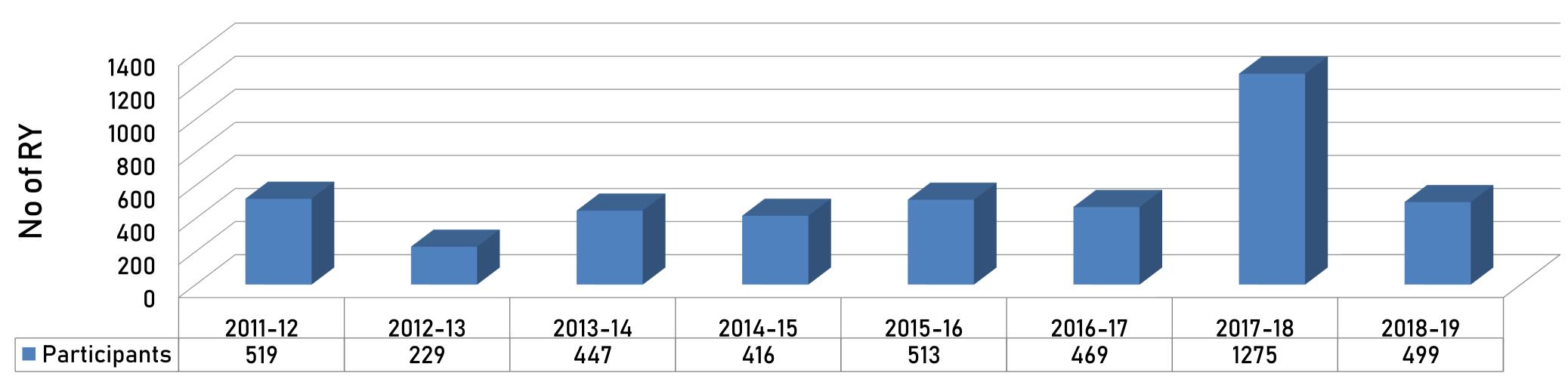
Extension functionaries Training Programme

Training programme conducted for extension functionaries

Year-wise participants of extension functionaries



participants



Rural Youth Training Programme

Training programmers conducted for rural youths (last 8 years)

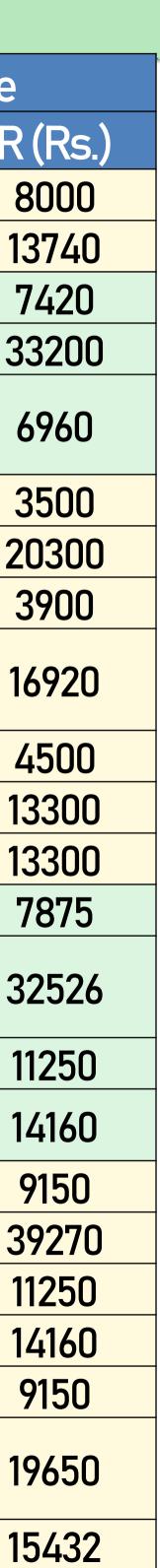
Year-wise participants of rural youths

Participants

Average participants : 546 per year

Summary of FLD achievement

Year	No. Of Crop in rabi season	No. Of Crop in Kharif season	Enterprise	No. of Farmers
2011-12	2	3	_	69
2012-13	4	3	—	62
2013-14	9	4	_	241
2014–15	9	1	_	269
2015-16	8	4	1	506
2016-17	5	6	_	430
2017-18	8	7	1	467
2018-19	5	1	3	290



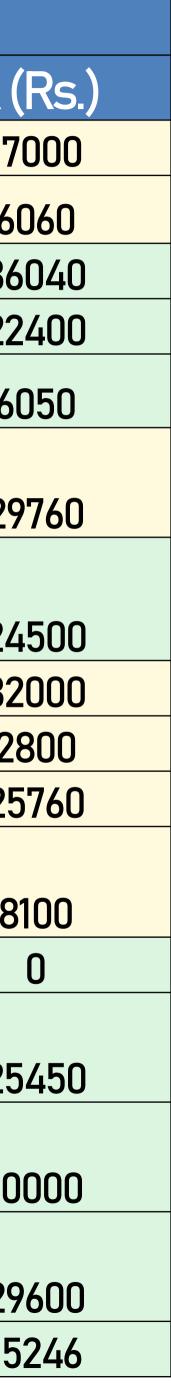
Front-line demonstration in Rabi season

Voorvieo	Crope		Area (ba)	Ava viold (a/ba)		Incre	ease
Yearwise	Crops	No. of farmer	Area (ha)	Avg. yield (q/ha)	Variety	C (Rs.)	R
l	Tori	30	11	10	Rauts -17	725	8
(2011–12)	Fodder crops	7	1	704	HYV	980	13
I	Toria	10	2	10.32	Pusatarak	500	7
(2012–13)	Green gram	11	3.5	13.63	PusaVisal	400	33
	Wheat	9	3	66.1	HD-2824, K-307	2000	6
	Toria	26	3.04	8.5	RAUTS-17	400	3
	Green Gram	52	14	19	SML-668, Rhizobium& PSB	1300	20
III (2013–14)	Lentil	10	3	8.5	HUL57	450	3
(2013-14)	Wheat	48	12.7	96.6	6.6 HD-2824, K-307, Azotobactor& PSB		16
	Maize	10	4	54.5	Shaktiman-3	880	4
	Rai	26	3	12.5	R.suflam	500	13
	Toria	78	25	20.5	Sulphur 80%, JE-28	1505	13
	Green gram	14	5	9.75	SML-668	500	7
IV (2014–15)	Wheat	83	24	I I64	PBW-502, HD-2824, HD- 2733, Azotobactor+PSB, DBW-14	8500	32
	Mustard	76	40	16.2	INM and IPM	1800	11
	Lentil	44	24	14.23	Seed Pesticides, M.nutrient	1025	14
	Field pea	112	30	11.22	Seed Pesticides, Micro.nutrients	915	9
	Chick pea	46	12	32.45	GNG-1581+INM, IPM	1900	39
	mustard	76	40	17.7	R.suflam	1800	11
IV (2014–15)	Lentil	44	24	14.23	L-4594	1025	14
10 (2014-13)	Field pea	112	30	11.22	IPFDI-10	905	9
	Sorghum green fodder	10	2	530	High yielding variety	1000	19
	Cauliflower	50	5	9306	Trichoderma viridi	50	15

Front-line demonstration in Rabi season

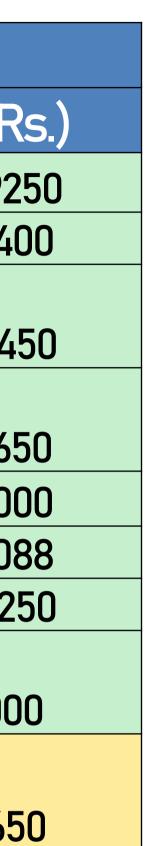
		No. of				Incr	ease
Yearwise	Crops	farmer	Area (ha)	Avg. yield (q/ha)	Variety	C (Rs.)	R
VI 2016–17	Linseed	97	20	8.99	Azad alsi-1 INM & IPM	1800	1
	Lentil	97	40	14.5	HUL-57 +INM&IPM	5250	3
	Litchi	50	20	200	Pheromone Trap		
	Cauliflower	50	10	350	Trichoderma viridi	2000	4
	Marigold	10	3	80	HYV	1000	1
	Potato	17	1.5	427.01	kufri Ashoka, K. Sinduri	4000	3
	Lentil	25	10	15.57	HUL-57 +INM&IPM	1900	2
	Rapseed & mustard	126	50	16.38	R.Suflam	1700	1
VII	Marigold	10	3	80	African gold	1000	12
2017–18	Litchi	23	10	200	Pheromone trap	24000	7
	Marigold	20	1	200	African gold	-1500	3
	Mushroom	20	4	85	Oyster mushroom	0	
	Maize	10	10		Hermetic storage bags for maize	0	
VIII	Mustard	<i>I. I.</i>	20	10 ን	R. Sufalam	2000	100
(2018–19)	Mustard	44	20	18.2	INM	2000	108
	Lentil	20	10	15.59	KLS-218 & HUL-57INM & IPM	3940	1
	Chick pea	28	10	17.49	GNG-1581	1500	210
	Licthi	30	10	52.88	NeemOil	43000	32

Contd.....



Front-line demonstration in *kharif* season

				Avg. yield		Incr	ease
Year wise	Crops	No. of farmer	Area (ha)	(q/ha)	Variety	C (Rs.)	R(
	Red gram	17	7	31.5	ND1, Malvia 13	-8180	17
2011-12	Paddy	15	5	33.13	Swarna sub –1	550	60
	Redgram	16	5	12.26	P-9	1000	36
2012-13	Black Gram	6	2	5.75	Gram-Pant 31	500	22
	Paddy	10	5	39	Bhagawati	600	60
III 2013-14	Paddy	69	25.5	160.2	R. Bhagawati, Swarna sub-1, Vaidehi, Rajshree 770		29
IV							
2014-15	Red gram	18	4.2	15	P-9	2500	24
	Red gram	8	2.1.	11	ICM	8000	32
V	paddy	15	4	10	ICM	600	28
2015-16	Barseem	6	2	667	Mascavi	1250	25
	Green gram	35	20	8.5	SML-668 INM& IPM	1600	81
	Arhar	5	1	10.2	Malvia-13	0	
	Berseem greer fodder	n 6	1.5	670	High yielding variety (Mascavi)	850	25
VI 2016–17	Cowpea	14	4	45	High yielding variety (Kashi kanchan)	5000	10
	Green gram	50	21	19.65	NP-1, Local/HUM-16/Sona/pusa vishal	5600	29
	Sesamum	51	20	8.23	Local & kalika	3050	15




Front-line demonstration in *kharif* season

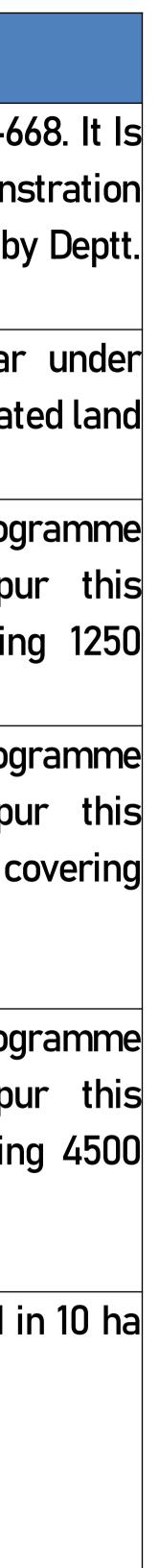
				Avg. yield		Increase	
Yearwise	Crops	No. of farmer	Area (ha)	(q/ha)	Variety	C (Rs.)	R (R
	Soya bean	35	10	21.88	PS-1042	26500	10925
VII	Cow Pea	10	3	85	HYV	1000	1540
(2017–18)	Berseem green						
	fodder	6	1.5	670	High yielding variety (Mascavi)	850	2545
	Sorghum green						
	fodder	10	2	530	High yielding variety	1000	1965
	Green gram	57	20	10.5	IPM-02-03, SOILTEST, INM, IPM	1650	1300
	Sesamum	21	10	5.9	Krishna	4000	1308
	Red gram	27	10	18.2	LRG-41	4050	2825
	Oyster						
	mushroom	20	4 unit	-	Oyster mushroom	-400	1000
VIII					DSR through zero till seed drill		
2018-19	Paddy	109	20	29.8	cum fertilizer machine	-1000	565

Front-line demonstration year round

	Crops	No. of		Avg. yield		Increase	
Yearwise		farmer Area (ha)		(q/ha)	Variety	C (Rs.)	R (R
VIII (2018–19)	Oyster mushroom	20	4 unit	-	Oyster mushroom	-400	100
	Mushroom	20	4	85	Oyster mushroom	0	492
	Maize	10	10		Hermetic storage bags for maize	0	0

Summary of OFT achievement

Year	Target	Achievement
2011-12	9	6
2012-13	8	4
2013-14	8	4
2014–15	7	4
2015-16	7	8
2016-17	10	9
2017-18	10	8
2018-19	8	7



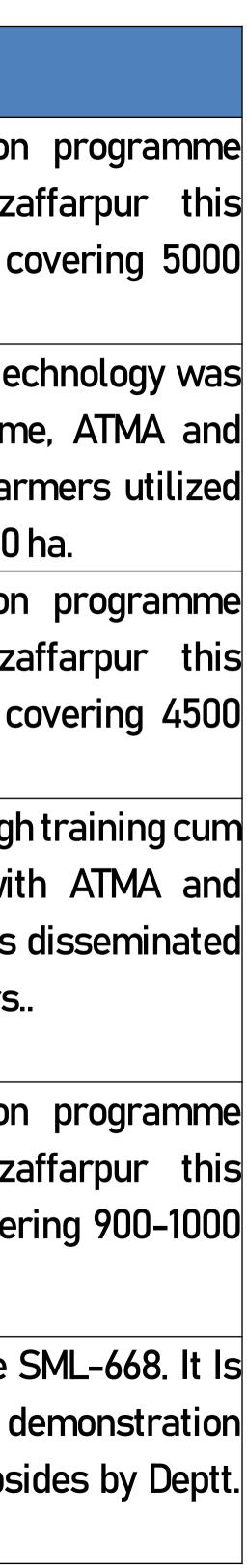
Details of technology refined / generated during the period under review

Technology	Relevance	Status of transfer
	Paddy cultivation needs high investment and comparatively less return specially in case of using local variety. Rajendra Bhagwati at the same	
		variety for quality rice as well as su climatic cange scenario
NPK - 90:40:40 +azobacter+PSB	Farmers are using excessive chemical fertilizer leading to deteriotion of	After completion of 2 years OFT, the tech
	soil health. In order to improve the soil health and production, biofertilizer is useful in addition to chemical fertilizer. It decreases the chemical fertilizer ratio and increases the yield upto 11.33%.	
Use of sulpher in Rai crop at the	Farmers are not aware about the importance of sulpher in oil crop and	After completion of 2 years OFT, the tech
ratio of 60:40:40:40(N:P:K:S) as	only use NPK. In comparison of cost of Sulpher the yield is too high, so	was disseminated through FLD prog
basal dose.	very beneficial for farmers. Through this technology yield was increases the production @ 43.66%.	more than 1500 farmers utilized the tec convering near about 1000 ha
	Conoweeder is very simple and cheap equipment for weeding. It works very efficiently by women farmers also so local khurpi can replaced by conoweeder. takes less time i.e. 9.8 hour per acre only. It saves from waist pain, palminjury and excessive tiredness.	technology is transferred among 550
Weed control (Pretilachlor @	Due to climate change scenario weed infestation is high in transplanted	In blocks of Saraiya, Kanti, Madwan, Paroo
0.75l/ha + one hand weeding)	paddy, reducing the yield as well as problem arises at the time of harvesting.	6000 small/marginal farmers adopte technology
50%EC @2 g/ + Chloropyriphos		

Technology	Relevance	Status of transfer
Green gram cultivars SML 66	8 Due to cultivation of local variety, yield of the green gram was	22% of the farmers of the district use SML-66
increase yield upto 41.94%	very poor as the variety was severely affected by YMV	also demonstrated under demonst
	disease. By this technology yield of the green gram increases	programmes by KVK and through subsides by
	upto 41.94 % because there is less incidence of YMV.	Of agriculture , Government of Bihar
Application of Pendimethalin as Pr	e Less rainfall in the region has lead to heavy weed infestation	The technology was promoted every year
emergence and Bispyribac sodiur	min DSR paddy. By application of this technology the yield of the	CSISA-KVK Network in 50-100 acre of cultivate
25g ai/ha 25DAT. in paddy,	paddy obtained up to 45.54q/ha.	and demonstrated under FLD programme.
Green gram cultivars Hum-12	Due to cultivation of local variety, yield of the green gram was	Through training cum demonstration progr
	very poor as the variety was severely affected by YMV	
	disease. This technology helps in increase in yield to 7.37q/ha	technology was upto 250ha area covering
	,while YMV severity was found 8.4 %	farmers
Management of Litchi Fruit Bore	erDue to infestation of fruit borer in litchi led to reduced	Through training cum demonstration progr
through foliar spraying of Neem of	il production as well as market value.by resulted in 7.2%.	along with ATMA and DHO, Muzaffarpur
300 ppm @ 3 ml after fruit setting an	d	technology was upto 2500-2600 ha area co
lambda cyholothrin @ 2 ml at after 1	5	1200 farmers
days of Neem oil spray		
INM through biofertilizer in Rat	pi Farmers are using excessive chemical fertilizer and to	Through training cum demonstration progr
Maize (100:60:50+Azotobacter+PSB)	improve the soil health and production, biofertilizer is useful	along with ATMA and DAO, Muzaffarpur
	in addition to chemical fertilizer as It decreases the chemical	ltechnology was upto 2000 ha area covering
	fertilizer ratio and increases the yield upto 11.33% since it is	farmers.
	easily available at low cost so farmers accepted it.	
Management of stem rot disease in	n Infestation of stem rot disease led to the reduction in yield of	Under FLD the demonstration IS Conducted in
Rai caused by Rhizoctonia solar	ni Rai. By application of this technology disease severity	area covering 50 farmers each year.
through soil treatment wit	h reduced by 4.47% and increased yield up to to 49.6%,	
Trichoderma viridi @ 5 kg/ha alon	g	
with vermicompost 1.5 t//ha. ha.		

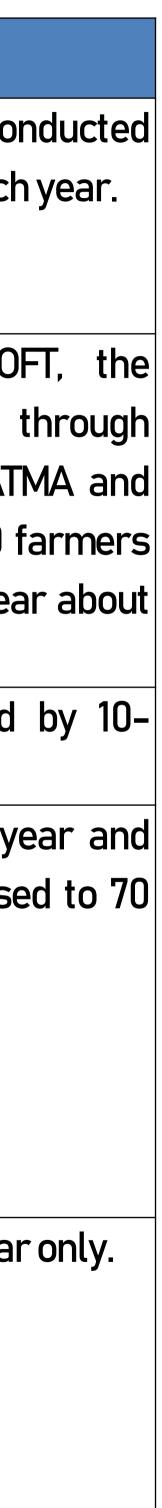
Technology	Relevanc
Soil test based fertilizer along with 25 kg ZnSO4 in paddy.	Farmers are using excessive che deterioted the soil health. soil test has resulted in increases the yiel farmer's practice.
Bio fertilizer effect on yield of green gram(20 kg N -40 kg P205- seed treatment of Rhizobium and PSB)	
Yield Maximization of wheat based on soil test value. (Recommended dose N:P:K: 120:60: 40)	
nitrogen levels for production of rabi maize (Plant spacing for sowing 40*20 and 150:75:50 kg/ha NPK)	Farmers in the district are ar
FIR technique (Carbendazim 50%EC @2 g/ + Chloropyriphos 50EC @5ml/kg +Rhizobium culture @ 5 g/kg of seed)	lentil was drastically reduced bu
Green gram cultivars SML 668 increase yield upto 41.94%	Due to cultivation of local variety, y very poor as the variety was s disease. By this technology yield o upto 41.94 % because there is less

emical fertilizer, which has Through training cum demonstration programme t based fertilizer application along with ATMA and DAO, Muzaffarpur this eld upto 34.83% against the technology was upto 2500 ha area covering 5000 farmers.


al fertilizers in green gram After completion of 2 years OFT, the technology was as resulted in increases the disseminated through FLD programme, ATMA and armer's practice. DAO, Muzaffarpur more than 1000 farmers utilized the technique convering near about 750 ha.

at crop has led to deterotion Through training cum demonstration programme action. Yield Maximization of along with ATMA and DAO, Muzaffarpur this has resulted in increase the technology was upto 2000 ha area covering 4500 farmers.

re sowing maize through After completion of 2 years OFT, Through training cum resulting in lower yield. the demonstration programme along with ATMA and corded in higher yield with DAO, Muzaffarpur this technology was disseminated 1820.00/ha and B: C (2.76) upto 750 ha area covering 1500 farmers..


e in lentil crop, yield of the Through training cum demonstration programme ut through this technonogy along with ATMA and DOA, Muzaffarpur this ases in lentil crop as well as technology was upto 350ha area covering 900-1000 farmers.

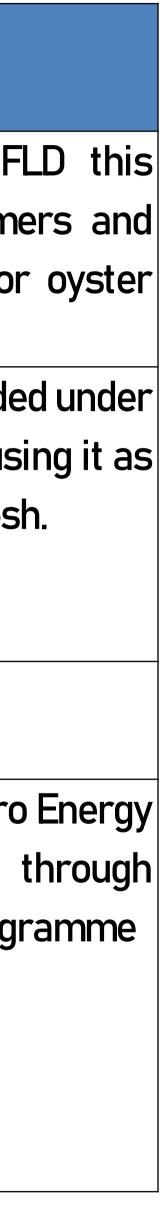
yield of the green gram was 22% of the farmers of the district use SML-668. It Is severely affected by YMV also demonstrated under demonstration of the green gram increases programmes by KVK and through subsides by Deptt. incidence of YMV. Of agriculture, Government of Bihar

Details of technology refined (Horticulture)

Technology	Relevance	Status of transfer
Management of damping off complexes in nursery bed	Due to damping off complexes disease, 42–50%	Under FLD, the demonstration is Con
of vegetable (Cauliflower) Through Trichoderma viridi @	seedling dies in nursery bed. Through this	in 1 ha area covering 50 farmers each
10 g - Neem cake 100g/sq.m	technology the disease incidence was found only	
	1.73% & increased the production upto 184%.	
seed treatment with Azotobacter and PSB in potato	Lower yield of potato in the district due to the lack	After completion of 2 years OF
(20% Reduced Recommended dose of fertilizer +	of availibilty of nutrients to the tubers. The	technology was disseminated t
Azotobactor and PSB)	application of seed treatment with Azotobacter and	training programme along with ATN
	PSB in potato has increased the yield to 2.25%	DAO, Muzaffarpur more than 1200 fa
	against the farmer practice.	utilized the technique convering near
		850 ha.
INM in potato (75 % Recommended dose of fertilizer + 25	Low yield due to irrational use of fertilizers and low	This technique has been adopted
% vermicompost) led to increase in production by 16.6%	organic carbon in soil	15farmers in 20 ha.
Integrated approaches for management of Die back	Production loss due to dieback in mango and it was	This technology was started last ye
disease of Mango. (Cultural practices like pruning and	a severe problem among farmers. By application of	recommendations have been advised
land preparation+ Drenching of Streptocyclin @ 1 g/10L	this technology disease severity was found only	farmers till date.
of water + Blitox 50 @ 4 g/L of water and repeat the	22.28%.	
application at 30 days' interval (Oct-Nov). + soil		
application of ZnSo4 +Feso4+Cuso4 (305g+200g +526g		
per plant)		
Management Panama wilt in banana through non-	Banana plantation is severly affected by Panama	This technology was started last year
chemical (disease free sucker+ vermicompost @ 250	wilt causing heavy economic losses. This technogy	
g/pit + soil application of Trichoderma viride (107) @ 10 g	highly effective with more than 52% wilt reduction.	
+ Psedumonas fluoroscens @ 50g /sucker at 0,2nd and		
4th month after planting.		

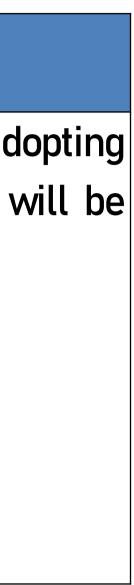
Details of technology refined (Livestock)

Technology	Relevance	Status of transfer
200gm/day) and two times deworming at one month interval provided better growth	Farmers donot heed importance to Feeding of concentrate mixture to goat kids. While the govt. veterinary hospital is supplying deworming drugs free of cost. Whenever concentrate mixture (150gm – 200gm/day) and two times deworming at one month interval showed better performance in terms of better growth performance for goat kids	35-40% farmers are providing conce mixture to got kids
reduction of Egg per gram (gastrointestinal	Farmers are using traditional esistant drugs for deworming which is not effective hence use of broad spectrum Anthelmintics are very useful.	


Details of technology refined (Poultry)

Techr	nology	Relevance		Status of t	ransfer	
	ation on performance	Rising readymade feed cost price increase the cost of production. economizing the feeding cost of the br farmers included 50–70% ground main using balance concentrate with Gr Maize ration,	For broiler. Toiler, ze by	mers adopted and got	good growth perf	forma
	th probiotics as feed	Most of the farmers using only probio some are adding single or double enz in broiler ration but when cocktai enzymes was used it showed to performance.	ymes multienzym Is of	• •	are using prob	biotio

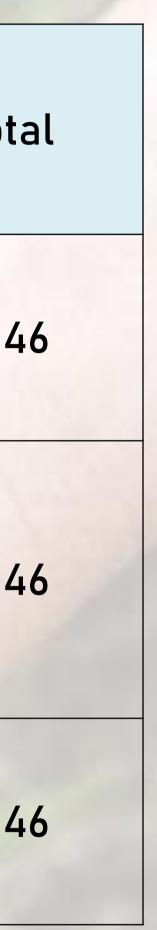
าลเ	nce	in
ic	wi	ith


Details of technology refined (Home science)

Technology	Relevance	Status of transfer
wheat straw as best substrate for Oyester	Wheat sraw as by product of wheat farming is	Through training, demonstration and FL
mushroom cultivation and produces 8 kg	locally available at low cost.	technology is initiated among 200 farme
mushroom per kg of spawn used.		100% of them are using wheat straw for mushroom cultivation
Button mushroom retains its whiteness at some	Button mushroom got blackish after sundried and	I Four year back this technology was provided
extent if dried after blanching and soaked in 1%	farmers have no option except sell it fresh	. OFT and FLD and only 10–12 farmers are usi
Potassium metabisulfite solution. It got 8.5 point	Treated mushroom preferred by farmers and	I button mushroom are preferred to sell fresh
at sensory evaluation.	Potassium metabisulfite is safe, cheap and	
	approved by FPO so farmers use it.	
soil treatment withTrichoderma viridi @ 5 kg/ha		
along with vermicompost 50 kg/ha		
Storage of local vegetables in Zero Energy cool	Oyster mushroom is highly perishable, local	2000 farmers knew the importance of Zero
chamber extends its self life upto nine days with	variety of tomato and other vegetables spoil in 3–4	Cool Chamber for vegetables storage t
5.1% Physiological weight loss for tomato, three	days and Zero Energy cool chamber can be	e training, Exhibition, Field visit and OFT progra
days with only 18% spoilage and 20.5% weight loss	constructed with local material. As it works on the	
for oyster mushroom and extends the self life for	basis of evaporative cooling and does not need	
5, 2, 6 and 2 days respectively for Okra, spinach,	electricity so farmers easily construct it at their	-
radish, and cauliflower respectively .	field.	

Details of technology refined (Agriculture Engineering)

Technology	Relevance	Status of transfer
wheel weeder in Green gram crop.Wheel weederwas found most effective in reducing	The predominant weed werePhysalisminon and Salanumnigrum This weed more grow in green gram field in Muzaffarpur district. The farmer used local khurpi for weed control but that tool not effectively removing the weed root and required more manpower, that why increase the cost of cultivation.	entage is very low. This technology w



Soil Testing and Soil Health Cards Issued

Inputs	l (2011–12)	II (2012–13)	III (2013–14)	IV (2014–15)	V (2015-16)	VI (2016–17)	VII (2017–18)	VIII (2018–19)	Tota
Soil Samples tested	nil	2400	100	184	685	1022	414	341	514
Soil Health Card issued	nil	2400	100	184	685	1022	414	341	514
No of Farmers benefitted	nil	2400	100	184	685	1022	414	341	514

×		
Area/Field	Target group	
Food Processing	SHGs	20 SHGs formed for makin achhar by Smt Rajkumari d
Tissue culture Banana	Banana farmers	1 lakh plants were produce Bhatoulia. It was sold thro too.
Seed production	Farmers	 Sri Satish Dwivedi is a Bandra Block of Muzaffa annually and the income seed in all over the state. Mehta Beej Nigam, Dholi and the income generate over the state.
Bee Keeping	Farmers	Abikshek Kumar adopted b and getting 200 to 300 lite 55000.00 annually.
Vermicompos ting		 Kheti enterprises prod income raised from Rs. 1 produce under several Ge to organic producer. 50 tonnes/ Annual produ sold all round the district

Impact

ng differnet kinds of pickle under Kisan chachi devi

ed annually by Mr. Avinash Kumar under MBRI, roughout the district and neighboring districts

progressive farmer of Sakari Chandpura in farpur district. He produce seed 25 t of seed e generated is 4-5 lakh/ annum by supplying

li, muzaffarpur produces 20 t of seed annually ted is 5 lakh/ annum by supplying seed in all

beekeeping in small unit starting with 10 boxes ter honey per year. He is earning Rs 45000-

duce vemicompost of 3000MT/annum. The 150000.00 to Rs.1000000/annum by selling the Govt. schemes. It is also sold at nearby districts

uced by Shri Maheshwar Rai. The produce was It via under different government schemes and

Area/Field	Target group	
Organic vegetable production	Farmers	 Sri Dinesh Kumar is active (Banana -10 acres, Litchi- 4 seed (9 acres) production. Rajesh Kumar Ranjan is p income generated is 2 lakh/
Lac bangle making	Farmers	Sulekha kumari is trained on S and started by investing Rs 2 8000.00 per month
Soft toys Making		Mr. Shambhu Ram produces c He developed the poultry hous from Rs. 75000to Rs.100000/a
Poultry farm	Farmers	1. Maharaja Paltry farm estab produce chicks in Bakhara vil to Rs.1000000/annum by sellir 2. Mr. Shambhu Ram produc block. He developed the poult raised from Rs. 75000to Rs.100

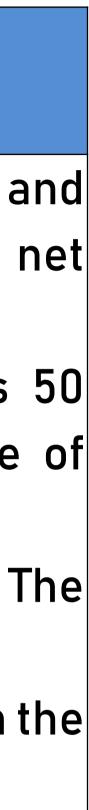
Impact

ely involved in vegetable (30 acres), fruits acres), Sugarcane (20 acres), Paddy/ wheat

- producing organic vegetables in 1 ha. the / annum.
- Soft toys making at Sadikpur Saraiya village 2500.00 at initial cost. Now she is getting Rs
- chicks in Ragunathpur village, saraiya block. Ise of 360 sq. metre area and income raised annum by selling the produce.
- blished by Mr. Vijay Shankar Kumar Raman llage. The income raised from Rs. 700000.00 ng the produce
- ces chicks in Ragunathpur village, Saraiya try house of 360 sq. metre area and income 10000/annum by selling the produce.

Area/Field	Target group	
Fish Culture	Farmers	 1. 1. Mr. Shivchandra from produces 5q /annum. V income of 70000.00/ann 2.2. Mr. Vishwanath Kum q/annum. With the ope 210000.00/annum. 3.3. Mr. Rakesh Kumar de income raised from Rs. 4 4.4. Mr. Binod Kumar has e operating cost of 60000.

Impact


Jakra Sheik, Madwan, has developed a 0.32 ha fish Pond and With the operating cost of 35000.00 he is generating a net านm

mar, has developed a 2 acre fish Pond and produces 50 erating cost of 96000.00 he is generating a net income of

eveloped a Pond (1 acre) and produce Fish of 5q/annum. The 45000.00 to Rs. 85,000/annum by selling the produce. developed 1ha fish Pond and produces 2 0q /annum. With the .00 he is generating a net income of 200000.00/annum.

Area/Field	Target group	
Mushroom cultivation	Ruralyouth	 Mr.Sudhanshu Kumar h oyster mushroom from He has developed and in Manju Devi started oyst from one kg spawn. She Vikash kumar started m activity has given him th annum. Rural youth are trained by investing Rs 4000.00

Impact

has started oyster mushroom cultivation. He is producing 9 kg n one kg spawn. He also started milky mushroom production. nnovative method of straw sterlization.

ter mushroom cultivation and Produces 5 kg oyster mushroom e has also started milky mushroom production.

nushroom spawn production and cultivation of mushroom .This the economic boost up from Rs. 48000.00 to Rs. 200000.00 per

I on lac bangle making process at Manikpur village are started at initial cost. They are getting Rs 10000.00 per month

Linkage establishment with other Govt. Department / NGOs

Establishment	Area of collaboration / interaction					
	 Identification of training needs. 					
Department of Agriculture Govt. of Bihar	 Joint implementation of training programme, Diagnostic Team visits. 					
	Identification of target groups.					
Agricultural Technology Management Agency	• Sponsored Training Programme & Joint Implementation of					
(ATMA) Muzaffarpur	Developmental Programme.					
	 Preparation of SREP, Programme implementation. 					
Department of Horticulture govt. of Bihar	 Joint participation in meetings for NHM. 					
	 Joint implementation of training programme. 					
Word vision, Muzaffarpur (NGO)	Technical backstopping					
IDF,Muzaffarpur(NGO)	Technical backstopping					
NRC,litchi	Technical backstopping					
CSRI,Motipur	Technical backstopping					
JEEViKA	Technical backstopping					
Sahgal Foundation	Technical backstopping					
NHRDF, Patna	Technical backstopping					
NABARD	Technical backstopping					
VASFA, Vaishali	Technical backstopping					
District Fishery Officer, Muzaffarpur	Technical backstopping					
Director seed & farm, DRPCAU, Pusa	Seed purchase and sale					
Department of soil science,College of	Technical backstopping					
agriculture, DRPCAU, Pusa						
Department of plant pathology, College of	Technical backstopping					
agriculture, DRPCAU, Pusa						
Department of food and nutrition, college of						
community science, DRPCAU, Pusa	Technical backstopping, Resource Person For Training					
Denartment of nost harvest technology college						
of agriculture engineering	Technical backstopping					
NUPDE Patra	backstonning					

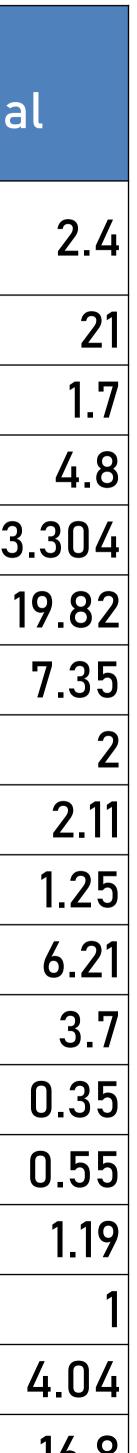
Budget (Rs. In lakh)

a. ICAR

Head	l (2011–12)	II (2012–13)	III (2013–14)	IV (2014–15)	V (2015–16)	VI (2016–17)	VII (2017–18)	VIII (2018–19)	Total
Recurring	8.23	8.09	10.5	4.75	13.0	30.44	13.58	11.5	100.09
Non-Recurring	21.78	2.13	2.68	10.55	1.2	1.2	8.0	3.55	51.09
ТА	0.99	0.9	0.75	0.5	1.0	1.55	1.3	1.0	7.99
Others	0.0	0.0	0.0	0.0	14.1	6.46	8.52	40.05	69.13

b. Other than ICAR

Head		II	III	IV	V	VI	VII	VIII	Total
	(2011–12)	(2012–13)	(2013–14)	(2014–15)	(2015–16)	(2016–17)	(2017–18)	(2018–19)	
Jeevika				1.65	2.68	1.88			6.21
World Vision	0.16					2.78	.010	0.75	3.7
NAIM, Jaipur	0.35								0.35
DOEE,Pusa	0.55								0.55
CAE, Pusa	1.19								1.19
DSR				1.0					1.0
ATMA				1.0			2.54	0.5	4.04
Soil health management								16.8	
scheme									16.8


Activity	l (2011–12)	II (2012–13)	III (2013–14)	IV (2014–15)	V (2015–16)	VI (2016–17)	VII (2017–18)	VIII (2018–19)	То
	3.9	3.01	3.36	10.9	8.06	8.21	7.1	9.23	53

Resource generation (Rs. in lakh)

Activity				IV	V	VI	VII	VIII	
	(2011–12)	(2012–13)	(2013–14)	(2014–15)	(2015–16)	(2016–17)	(2017–18)	(2018–19)	Tota
Pre Rabi kisan					0.8	0.8		0.8	
Sammelan									
KKA								21.0	
PMKSY								1.7	
DAMU								4.8	
ASCI								3.304	3
CFLD (2018-19)					9.4	4.8	3.37	2.25	1
CSISA							4.35	3.0	
SCSP								2.0	
Soiltesting					1.25	0.86			
Farmer fair					1.25				
jeevika				1.65	2.68	1.88			
World Vision	0.16					2.78	.010	0.75	
NAIM, Jaipur	0.35								
DOEE,Pusa	0.55								
CAE,Pusa	1.19								
DSR				1.0					
ATMA				1.0			2.54	0.5	
Soil health								16.8	

New Initiative

a. KKA –Phase I

Programmes	No.	Beneficiaries
Training	123	4842
Planting material	12500	3876
No. of animal vaccinated	9567	3362
Distribution of seeds	203	3876
NADEP/Vermi compost unit	94	94
Soil Health card distributed	4981	4981
Farm implement distributed	00	00

b. KKA-Phase-II:

Programmes	No.	Beneficiaries
Training	89	3038
Planting material	00	00
No. of animal vaccinated	9308	5485
Distribution of seeds	48	1204
NADEP/Vermi compost unit	420	420
Soil health card	5647	5647
Farmimplement	490	490

Cereal Systems Initiative for South Asia (CSISA)

Re Experiment Improving rice- Wheat cropping system (RWCS) productivity using different crop establishment methods. Combative performance of rice establishment methods in different ecologies of Bihar (Muzaffarpur). Effects of delayed transplanting on the growth and the yield of rice. Impact of age of rice nursery on the growth and yield of transplanted rice rationale Developing entrepreneurship rice on nursery marketing. Effect of critical irrigation on the yield of rice. Performance of conventional till DSR with and without pre-sowing irrigation.

Weed Management in direct seeded rice dominated Cyperusrotundusbased mixed weed flora.

eplications	Area (Acre)	covered
16		5
6		2
8		2
5		2
10		5
10		5
6		2
10		2

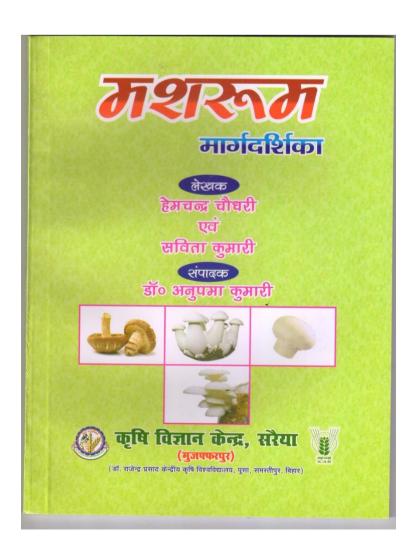
Cereal Systems Initiative for South Asia (CSISA)

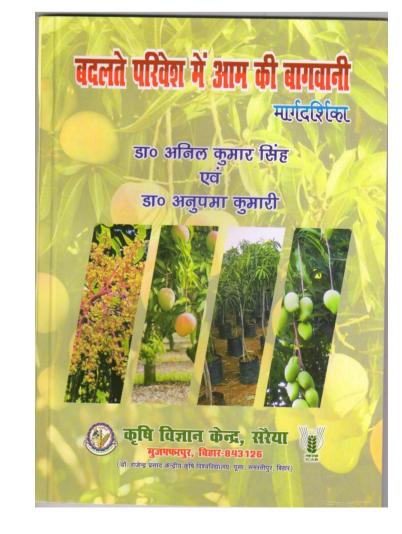
Rabi

Experiment	Replications	Area covered (Acre)
	-	
Performance of short duration (SDVs) and long		5
duration varieties (LDVs) under different sowing		
schedules across ecologies.		
Assessing the role of additional irrigation during	10	5
terminal heat stress period during grain filling		
stage to beat the heat stress and its effect on		
wheat productivity.		
Response of wheat to Phosphorus applied in	10	5
both rice & wheat and only in wheat in rice-wheat		
rotation		
Impact of herbicide application technology on the	10	5
performance of herbicide in wheat HD2967.		
Boron deficiency induced sterility in wheat and	10	5
its effect on the yield and yield attributes of		
wheat.		
Quantifying the grain in wheat productivity	10	5
throughzero- tillage mediated advance sowing		
of wheat.		
Residue management in rice –wheat system.	10	5

Cluster front Line Demonstration (CFLD)

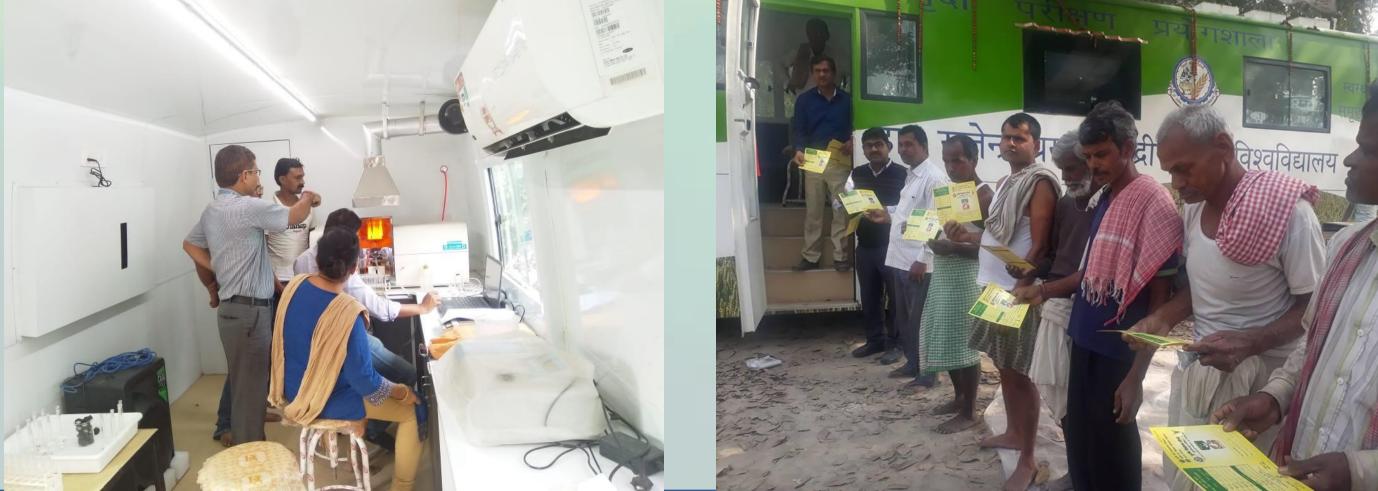
Variety demonstrated	Technology demonstrated	Number of farmers	Area (ha)
Green gram	SML-668INM&IPM	35	20
mustard	R.suflam	76	40
Lentil	L-4594	44	24
Field pea	IPFDI-10	112	30
Lentil	Azad Alsi-1INM&IPM	97	20
lentil	HUL-57+INM and IPM	97	40
Greengram	NP-1	15	1
Green gram	Local/HUM-16/Sona/pusa vishal	35	20
Sesamum	Local & kalika	51	20
Green gram	IPM-02-03, SOIL TEST ,INM,IPM	57	20
Soybean	Krishna	35	10
Sesamum	Krishna	21	10
Lentil	HUL-57 +INM&IPM	25	10
Rapeseed & Mustard	R.Suflam	126	50
Redgram	LRG-41	27	10
Lentil	KLS-218 & HUL-57INM & IPM	20	10
Chick pea	GNG-1581	28	10




Conti.....

ASCI Skill Development Training Programme

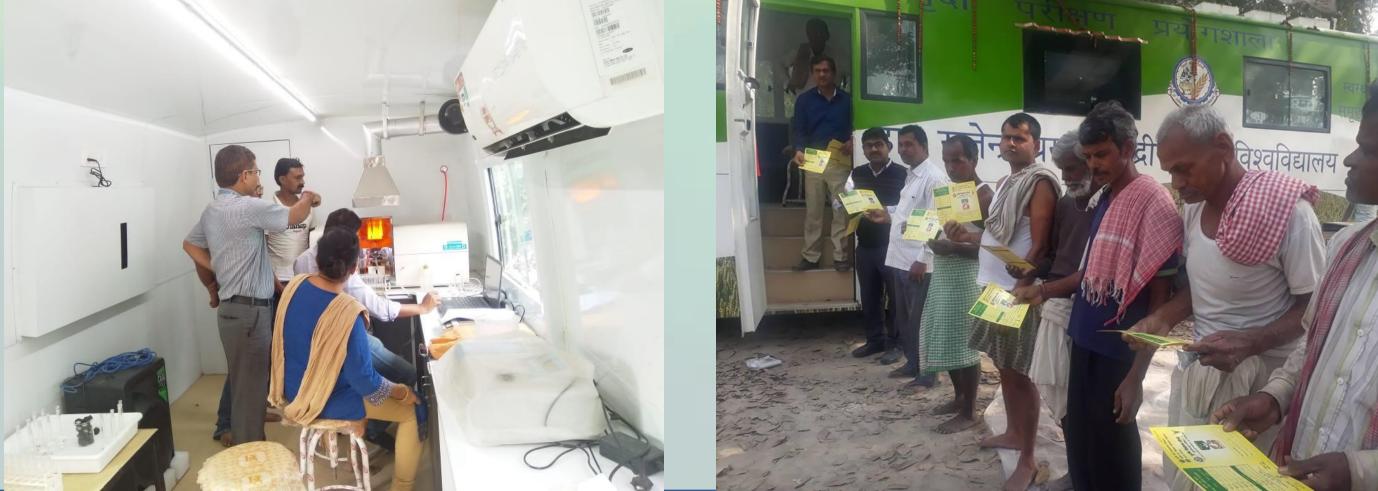
Year	Name of the Job role	Name of the certified Trainer of KVK for the Job role	Date of start of training	Date of completion of training	No. of participants	<image/>
2018-19	Job role for mushroom grower	Mr. Hemchandra Choudhary	7.012019	19.02.2019	20	
2018-19	Job role for mango grower	Dr. A.K.Singh	17.01.2019	21.02.2019	20	



Mobile Soil Testing Lab

Inputs Soil Samples tested Soil Health Card issued No of Farmers benefitted

11		
2	2018–19	
	341	
	341	
	341	



Mobile Soil Testing Lab

Inputs Soil Samples tested Soil Health Card issued No of Farmers benefitted

11		
2	2018–19	
	341	
	341	
	341	

Supply of seed of new varieties

New varieties

Pusa vristi(Carrot)

Pusa chetaki(raddish)

P.S (Brinjal)

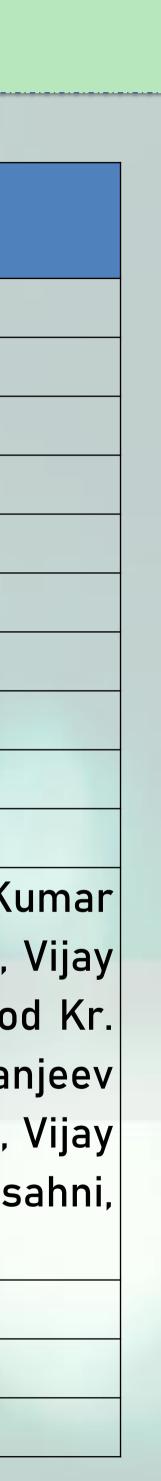
All Green (Spinach)

P.E.B (Fenugreek)

Pusa sugandha-16 (Paddy)

Naveen (Bottle gourd)

HD2967(Wheat)

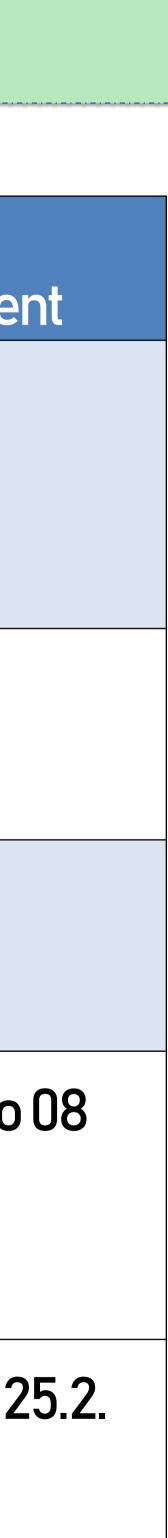

844226534

Name of beneficiaries

Ajay kumar
Satish kumar
Mahesh patel
Shaliesh ojha
Ashok singh
Dinesh kumar
Ramashankar singh
Satish Kr. Dwivedi
Prabhat Kumar Dwivedi
Ashok Kumar Dwivedi
<mark>Satish Kr.</mark> Dwivedi, Prabhat Kumar Dwivedi, Ashok K
Dwivedi, Ramniranjan Prasad Dwivedi, Rajmohan Dwivedi,
kr. Dwivedi, Prayas Kr. Dwivedi, Vinod Kr. Dwivedi, Pramo
Dwivedi, Bikhari Rai, Baidyanath Rai, Bhajju Mahto, Sa
Kumar, Rajiv Kumar, Nanadkishor Dwivedi, Rajesh Kumar,
prakash, Naval Kishor Thakur, Saroj Kr.Thakur, Rajendra s
Mahesh sahni , Anil Sahni
Satish Kr. Drivedi

Prabhat Kumar Drivedi

Ashok Kumar Drivedi


Sl. No.	Name of the Award	Name of the Scientist and Farmer	Year	Conferring Authority
5	Women Achievers Award	Smt. Rajkumari Devi	2014	
6	Avinav Kisan Award	Smt. Rajkumari Devi	2014	RAU, Pusa Samastipur
7	Avinav Kisan Award	Sri Dinesh Kumar	2014	RAU, Pusa Samastipur
8	Avinav Kisan Award	Sri Avinash Kumar	2016	RAU, Pusa Samastipur
9	Mahindra Samridhi Award	Sri Avinash Kumar	2016	Mahindra and Mahindra
10	Udyaan Ratna	Sri Dinesh Kumar	2017	ICAR
11	Avinav Kisan Award	Sri Maheshwar Rai	2019	RPCAU, Pusa Samastipur

Other salient recognition by KVK, Scientist

S.N.	Name & Designation of Scientist	Award/Recognition/Distinction/Distinction	Awarding organization	Year of award	Date of announcemer
1	Dr. Kamlesh Kumar Singh and Dr. Anupama Kumari	Best Poster Presentation Award	Society for upliftment of rural economy (SURE)	2018	01.11.2018
2.	Dr. Savita Kumari	Best extension scientist Award,2017	SURE	2018	01.11.2018
3.	Dr. Savita Kumari and Dr. Anupama Kumari	Best Poster Presentation Award	SURE	2018	01.11.2018
4.	Tarun Kumar, Anupma Kumari, Brajesh Shahi and D.C. Jhariya	Best Poster Award	IASWC and IISWC	2019	06.02. 2019 to 0
5.	Shobha Rawat	Young Scientist Award	Kalash research and welfare society	2019	24.2. 2019 to 2 2019

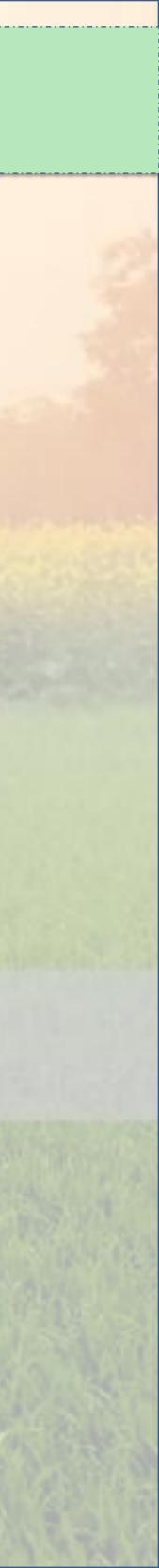
Celebration of Important Day

Swachchta Pakhwara



National Fish Farmer Day

World Meteorological Day

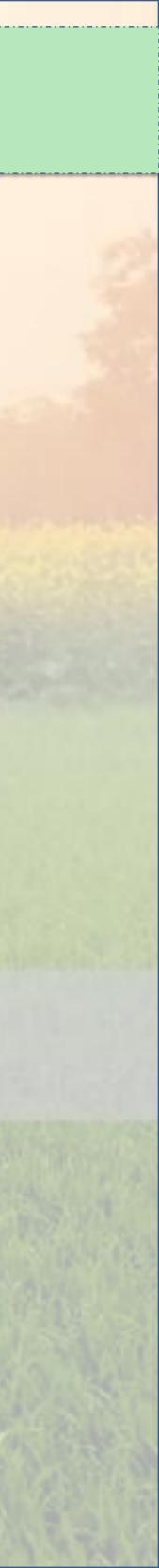


Mahila Kisan Diwas

Jay Kisan Jay Vigyan Diwas

Celebration of Important Day

LIVE telecast of Hon'ble PMs Speech



No Tobacco Day

National Nutritional week celebration

gettyimages' pixelfusion3d

Achievement of the KVK

Best KVK award 2017

Sponsored training

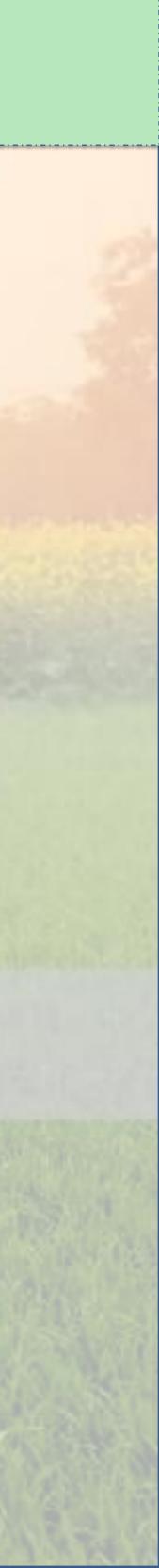
Field Day on Zero till

Mushroom Cultivation

503646746

Food Processing

Seed Production


Mushroom Production

Awareness on Zero tillage

NADEP/Vermicompost pit

Extension Activities Undertaken during 2011-2019

Activity	Total
Field Days	51
Agril. Exhibition	11
Farmers' Fairs	19
RadioTalk	2
TVshow	83
Filmshow	8
Training materials produced (a) Pamphlets (b) Video-cassette/ CD (c) Slides	31
Farm Science Club organized	1
Mahila Mandals Organized	15
Extension Training meetings organized	2
i.Kisan Ghosthi	66
ii.Farmers Seminar	10

Activity

Lectures del

resource per

Newspapero

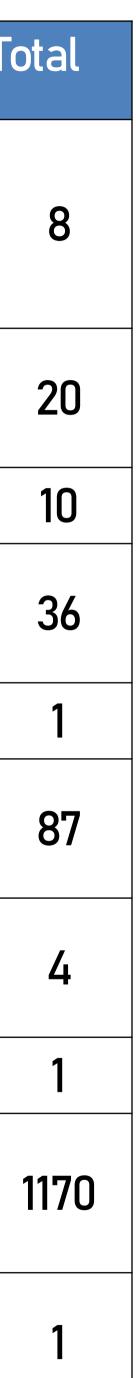
Popular artic

Advisory Ser

Scientific vis field

Farmers visi

Diagnostic vi


Exposure vis

Animal Healt

Soil test cam

Celebration of days (specify

	Total	Activity	Т
elivered as ersons	254	Farmers'- Scientists' Interaction	
coverage icles	478 6	Method demonstration	
ervices	5136	Exposure visit	
sit to farmers	3054	Swacchata pakhwara	
sit to KVK	()) 1	Crop seminar	
	6331	Awareness programme	
visits	1273		
sits	16	Video conferencing	
lth Camp	3		
mpaigns	6	Sankalp se siddhi	
of important		Mobile advisory services	
fy)	8	Pesticides dealer meet	

Type of Publication	Number
Research article	19
Popular article	6
Electronic media	15
Extension Literature :	15
Reports published in ICAR Reporters	2
Book chapter	36
Electronic publication	1

Publications made during 2011-2019)

